Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Br J Anaesth ; 131(6): 1030-1042, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37714750

RESUMO

BACKGROUND: Clinical studies suggest that anaesthesia exposure early in life affects neurobehavioural development. We designed a non-human primate (NHP) study to evaluate cognitive, behavioural, and brain functional and structural alterations after isoflurane exposure during infancy. These NHPs displayed decreased close social behaviour and increased astrogliosis in specific brain regions, most notably in the amygdala. Here we hypothesise that resting-state functional connectivity MRI can detect alterations in connectivity of brain areas that relate to these social behaviours and astrogliosis. METHODS: Imaging was performed in 2-yr-old NHPs under light anaesthesia, after early-in-life (postnatal days 6-12) exposure to 5 h of isoflurane either one or three times, or to room air. Brain images were segmented into 82 regions of interest; the amygdala and the posterior cingulate cortex were chosen for a seed-based resting-state functional connectivity MRI analysis. RESULTS: We found differences between groups in resting-state functional connectivity of the amygdala and the auditory cortices, medial premotor cortex, and posterior cingulate cortex. There were also alterations in resting-state functional connectivity between the posterior cingulate cortex and secondary auditory, polar prefrontal, and temporal cortices, and the anterior insula. Relationships were identified between resting-state functional connectivity alterations and the decrease in close social behaviour and increased astrogliosis. CONCLUSIONS: Early-in-life anaesthesia exposure in NHPs is associated with resting-state functional connectivity alterations of the amygdala and the posterior cingulate cortex with other brain regions, evident at the juvenile age of 2 yr. These changes in resting-state functional connectivity correlate with the decrease in close social behaviour and increased astrogliosis. Using resting-state functional connectivity MRI to study the neuronal underpinnings of early-in-life anaesthesia-induced behavioural alterations could facilitate development of a biomarker for anaesthesia-induced developmental neurotoxicity.


Assuntos
Isoflurano , Animais , Isoflurano/efeitos adversos , Gliose , Encéfalo/diagnóstico por imagem , Giro do Cíngulo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Primatas , Mapeamento Encefálico/métodos , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiologia
2.
Immunity ; 56(7): 1649-1663.e5, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37236188

RESUMO

Allogeneic hematopoietic stem cell transplantation (alloHSCT) from donors lacking C-C chemokine receptor 5 (CCR5Δ32/Δ32) can cure HIV, yet mechanisms remain speculative. To define how alloHSCT mediates HIV cure, we performed MHC-matched alloHSCT in SIV+, anti-retroviral therapy (ART)-suppressed Mauritian cynomolgus macaques (MCMs) and demonstrated that allogeneic immunity was the major driver of reservoir clearance, occurring first in peripheral blood, then peripheral lymph nodes, and finally in mesenteric lymph nodes draining the gastrointestinal tract. While allogeneic immunity could extirpate the latent viral reservoir and did so in two alloHSCT-recipient MCMs that remained aviremic >2.5 years after stopping ART, in other cases, it was insufficient without protection of engrafting cells afforded by CCR5-deficiency, as CCR5-tropic virus spread to donor CD4+ T cells despite full ART suppression. These data demonstrate the individual contributions of allogeneic immunity and CCR5 deficiency to HIV cure and support defining targets of alloimmunity for curative strategies independent of HSCT.


Assuntos
Infecções por HIV , Transplante de Células-Tronco Hematopoéticas , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Macaca fascicularis , Carga Viral
3.
Br J Anaesth ; 127(3): 447-457, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34266661

RESUMO

BACKGROUND: Infant anaesthesia causes acute brain cell apoptosis, and later in life cognitive deficits and behavioural alterations, in non-human primates (NHPs). Various brain injuries and neurodegenerative conditions are characterised by chronic astrocyte activation (astrogliosis). Glial fibrillary acidic protein (GFAP), an astrocyte-specific protein, increases during astrogliosis and remains elevated after an injury. Whether infant anaesthesia is associated with a sustained increase in GFAP is unknown. We hypothesised that GFAP is increased in specific brain areas of NHPs 2 yr after infant anaesthesia, consistent with prior injury. METHODS: Eight 6-day-old NHPs per group were exposed to 5 h isoflurane once (1×) or three times (3×), or to room air as a control (Ctr). Two years after exposure, their brains were assessed for GFAP density changes in the primary visual cortex (V1), perirhinal cortex (PRC), hippocampal subiculum, amygdala, and orbitofrontal cortex (OFC). We also assessed concomitant microglia activation and hippocampal neurogenesis. RESULTS: Compared with controls, GFAP densities in V1 were increased in exposed groups (Ctr: 0.208 [0.085-0.427], 1×: 0.313 [0.108-0.533], 3×: 0.389 [0.262-0.652]), whereas the density of activated microglia was unchanged. In addition, GFAP densities were increased in the 3× group in the PRC and the subiculum, and in both exposure groups in the amygdala, but there was no increase in the OFC. There were no differences in hippocampal neurogenesis among groups. CONCLUSIONS: Two years after infant anaesthesia, NHPs show increased GFAP without concomitant microglia activation in specific brain areas. These long-lasting structural changes in the brain caused by infant anaesthesia exposure may be associated with functional alterations at this age.


Assuntos
Anestesia por Inalação/efeitos adversos , Anestésicos Inalatórios/toxicidade , Encéfalo/efeitos dos fármacos , Gliose/induzido quimicamente , Isoflurano/toxicidade , Microglia/efeitos dos fármacos , Administração por Inalação , Fatores Etários , Anestésicos Inalatórios/administração & dosagem , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas de Ligação ao Cálcio/metabolismo , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Gliose/metabolismo , Gliose/patologia , Isoflurano/administração & dosagem , Macaca mulatta , Masculino , Proteínas dos Microfilamentos/metabolismo , Microglia/metabolismo , Microglia/patologia , Fatores de Tempo
4.
Neurobiol Dis ; 149: 105245, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33385515

RESUMO

Barbiturates and benzodiazepines are potent GABAA receptor agonists and strong anticonvulsants. In the developing brain they can cause neuronal and oligodendroglia apoptosis, impair synaptogenesis, inhibit neurogenesis and trigger long-term neurocognitive sequelae. In humans, the vulnerable period is projected to extend from the third trimester of pregnancy to the third year of life. Infants with seizures and epilepsies may receive barbiturates, benzodiazepines and their combinations for days, months or years. How exposure duration affects neuropathological sequelae is unknown. Here we investigated toxicity of phenobarbital/midazolam (Pb/M) combination in the developing nonhuman primate brain. Neonatal rhesus monkeys received phenobarbital intravenously, followed by infusion of midazolam over 5 (n = 4) or 24 h (n = 4). Animals were euthanized at 8 or 36 h and brains examined immunohistochemically and stereologically. Treatment was well tolerated, physiological parameters remained at optimal levels. Compared to naïve controls, Pb/M exposed brains displayed widespread apoptosis affecting neurons and oligodendrocytes. Pattern and severity of cell death differed depending on treatment-duration, with more extensive neurodegeneration following longer exposure. At 36 h, areas of the brain not affected at 8 h displayed neuronal apoptosis, while oligodendroglia death was most prominent at 8 h. A notable feature at 36 h was degeneration of neuronal tracts and trans-neuronal death of neurons, presumably following their disconnection from degenerated presynaptic partners. These findings demonstrate that brain toxicity of Pb/M in the neonatal primate brain becomes more severe with longer exposures and expands trans-synaptically. Impact of these sequelae on neurocognitive outcomes and the brain connectome will need to be explored.


Assuntos
Anticonvulsivantes/administração & dosagem , Anticonvulsivantes/toxicidade , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Animais , Animais Recém-Nascidos , Esquema de Medicação , Macaca mulatta
5.
Br J Anaesth ; 126(2): 486-499, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33198945

RESUMO

BACKGROUND: Clinical studies show that children exposed to anaesthetics for short times at young age perform normally on intelligence tests, but display altered social behaviours. In non-human primates (NHPs), infant anaesthesia exposure for several hours causes neurobehavioural impairments, including delayed motor reflex development and increased anxiety-related behaviours assessed by provoked response testing. However, the effects of anaesthesia on spontaneous social behaviours in juvenile NHPs have not been investigated. We hypothesised that multiple, but not single, 5 h isoflurane exposures in infant NHPs are associated with impairments in specific cognitive domains and altered social behaviours at juvenile age. METHODS: Eight Rhesus macaques per group were anaesthetised for 5 h using isoflurane one (1×) or three (3×) times between postnatal days 6 and 12 or were exposed to room air (control). Cognitive testing, behavioural assessments in the home environment, and provoked response testing were performed during the first 2 yr of life. RESULTS: The cognitive functions tested did not differ amongst groups. However, compared to controls, NHPs in the 3× group showed less close social behaviour (P=0.016), and NHPs in the 1× group displayed increased anxiety-related behaviours (P=0.038) and were more inhibited towards novel objects (P<0.001). CONCLUSIONS: 5 h exposures of NHPs to isoflurane during infancy are associated with decreased close social behaviour after multiple exposures and more anxiety-related behaviours and increased behavioural inhibition after single exposure, but they do not affect the cognitive domains tested. Our findings are consistent with behavioural alterations in social settings reported in clinical studies, which may guide future research.


Assuntos
Anestésicos Inalatórios/toxicidade , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Cognição/efeitos dos fármacos , Isoflurano/toxicidade , Síndromes Neurotóxicas/etiologia , Comportamento Social , Fatores Etários , Anestésicos Inalatórios/administração & dosagem , Animais , Animais Recém-Nascidos , Ansiedade/induzido quimicamente , Ansiedade/fisiopatologia , Ansiedade/psicologia , Encéfalo/fisiopatologia , Esquema de Medicação , Comportamento Exploratório/efeitos dos fármacos , Feminino , Isoflurano/administração & dosagem , Macaca mulatta , Masculino , Atividade Motora/efeitos dos fármacos , Síndromes Neurotóxicas/fisiopatologia , Síndromes Neurotóxicas/psicologia , Tempo de Reação/efeitos dos fármacos , Fatores de Tempo
6.
Comp Med ; 70(6): 520-525, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33153516

RESUMO

Nonbronchoscopic bronchoalveolar lavage (NB-BAL) is a minimally invasive diagnostic and research tool used to sample the cells of lower airways and alveoli without using a bronchoscope. Our study compared NB-BAL and bronchoscopic bronchoalveolar lavage (B-BAL) in terms of costs, cell yields, and the number of post-procedural complications in macaques. We also analyzed procedure times, BAL fluid volume yields, and vital signs in a subset of animals that underwent NB-BAL. Compared with the B-BAL technique, NB-BAL was less expensive to perform, with fewer complications, fewer animals requiring temporary or permanent cessation of BALs, and higher cell yields per mL of recovered saline. The average procedure time for NB-BAL was 6.8 ± 1.6 min, and the average NB-BAL lavage volume yield was 76 ± 9%. We found no significant differences in respiration rate before, during, or after NB-BAL but did find significant differences in heart rate and oxygen saturation (SpO2). This study demonstrates that NB-BAL is a simple, cost-effective, and safe alternative to B-BAL that results in higher cell yields per mL, improved animal welfare, and fewer missed time points, and thus constitutes a refinement over the B-BAL in macaques.


Assuntos
Pulmão , Macaca , Animais , Lavagem Broncoalveolar , Líquido da Lavagem Broncoalveolar
7.
Xenotransplantation ; 27(4): e12578, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31930750

RESUMO

Allogeneic hematopoietic stem cell transplantation (HSCT) and xenotransplantation are accompanied by viral reactivations and virus-associated complications resulting from immune deficiency. Here, in a Mauritian cynomolgus macaque model of fully MHC-matched allogeneic HSCT, we report reactivations of cynomolgus polyomavirus, lymphocryptovirus, and cytomegalovirus, macaque viruses analogous to HSCT-associated human counterparts BK virus, Epstein-Barr virus, and human cytomegalovirus. Viral replication in recipient macaques resulted in characteristic disease manifestations observed in HSCT patients, such as polyomavirus-associated hemorrhagic cystitis and tubulointerstitial nephritis or lymphocryptovirus-associated post-transplant lymphoproliferative disorder. However, in most cases, the reconstituted immune system, alone or in combination with short-term pharmacological intervention, exerted control over viral replication, suggesting engraftment of functional donor-derived immunity. Indeed, the donor-derived reconstituted immune systems of two long-term engrafted HSCT recipient macaques responded to live attenuated yellow fever 17D vaccine (YFV 17D) indistinguishably from untransplanted controls, mounting 17D-targeted neutralizing antibody responses and clearing YFV 17D within 14 days. Together, these data demonstrate that this macaque model of allogeneic HSCT recapitulates clinical situations of opportunistic viral infections in transplant patients and provides a pre-clinical model to test novel prophylactic and therapeutic modalities.


Assuntos
Modelos Animais de Doenças , Transplante de Células-Tronco Hematopoéticas , Infecções Oportunistas , Viroses , Aloenxertos , Animais , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Macaca fascicularis , Infecções Oportunistas/virologia
8.
Sci Rep ; 8(1): 5302, 2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29593226

RESUMO

Caffeine is the most frequently used medication in premature infants. It is the respiratory stimulant of choice for apnea associated with prematurity and has been called the silver bullet in neonatology because of many proven benefits and few known risks. Research has revealed that sedative/anesthetic drugs trigger apoptotic death of neurons and oligodendrocytes in developing mammalian brains. Here we evaluated the influence of caffeine on the neurotoxicity of anesthesia in developing nonhuman primate brains. Fetal macaques (n = 7-8/group), at a neurodevelopmental age comparable to premature human infants, were exposed in utero for 5 hours to no drug (control), isoflurane, or isoflurane + caffeine and examined for evidence of apoptosis. Isoflurane exposure increased apoptosis 3.3 fold for neurons and 3.4 fold for oligodendrocytes compared to control brains. Isoflurane + caffeine caused neuronal apoptosis to increase 8.0 fold compared to control levels but did not augment oligoapoptosis. Neuronal death was particularly pronounced in the basal ganglia and cerebellum. Higher blood levels of caffeine within the range considered therapeutic and safe for human infants correlated with increased neuroapoptosis. Caffeine markedly augments neurotoxicity of isoflurane in the fetal macaque brain and challenges the assumption that caffeine is safe for premature infants.


Assuntos
Cafeína/efeitos adversos , Desenvolvimento Fetal/efeitos dos fármacos , Isoflurano/efeitos adversos , Anestesia/efeitos adversos , Anestésicos Inalatórios/efeitos adversos , Anestésicos Inalatórios/farmacologia , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Cafeína/farmacologia , Morte Celular/efeitos dos fármacos , Feminino , Isoflurano/farmacologia , Macaca mulatta/embriologia , Masculino , Neurônios/fisiologia , Oligodendroglia/efeitos dos fármacos , Gravidez
9.
Blood Adv ; 2(2): 76-84, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29365313

RESUMO

Sequestering of latent HIV in follicular helper T cells within B-cell follicles that largely exclude cytotoxic T cells is a major barrier to cellular immune-based approaches to eradicate HIV. Here, we show that the clinical-grade human interleukin-15 (IL-15) superagonist ALT-803 activates and redirects simian immunodeficiency virus (SIV)-specific CD8+ T cells from the peripheral blood into B-cell follicles. In agreement with the increased trafficking of SIV-specific cytotoxic T cells to sites of cryptic viral replication, lymph nodes of elite controlling macaques contained fewer cells expressing SIV RNA or harboring SIV DNA post-ALT-803 treatment. These data establish ALT-803 as an immunotherapeutic for HIV and other chronic viral pathogens that evade host immunity by persisting in B-cell follicles.


Assuntos
Linfócitos B/virologia , Linfócitos T CD8-Positivos/imunologia , Proteínas/uso terapêutico , Vírus da Imunodeficiência Símia/imunologia , Animais , HIV/efeitos dos fármacos , Humanos , Evasão da Resposta Imune/efeitos dos fármacos , Interleucina-15/agonistas , Macaca/virologia , Proteínas Recombinantes de Fusão , Linfócitos T Citotóxicos/imunologia
10.
Comp Med ; 67(6): 537-540, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29212587

RESUMO

Inguinal herniation of abdominal viscera is a relatively common condition in both humans and domestic animal species. In captive rhesus macaques (Macaca mulatta), the highest incidence occurs in overweight, aged males. However, inguinal herniation of the uterus with bilateral adnexa is extremely rare in both human and veterinary medicine. Here we report a previously undescribed uterine inguinal herniation with bilateral adnexa in a 3-y-old female rhesus macaque. Although uterine herniation remains a rare condition in rhesus macaques, it should be considered as a differential diagnosis in animals with unilateral subcutaneous enlargements in the inguinal region.


Assuntos
Hérnia Inguinal/veterinária , Herniorrafia/veterinária , Macaca mulatta , Doenças dos Macacos/patologia , Anexos Uterinos/patologia , Anexos Uterinos/cirurgia , Animais , Feminino , Hérnia Inguinal/patologia , Hérnia Inguinal/cirurgia , Herniorrafia/métodos , Doenças dos Macacos/cirurgia , Ultrassonografia/veterinária , Útero/diagnóstico por imagem , Útero/patologia , Útero/cirurgia
11.
Nat Commun ; 8(1): 1418, 2017 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-29127275

RESUMO

Allogeneic hematopoietic stem cell transplantation (HSCT) is a critically important therapy for hematological malignancies, inborn errors of metabolism, and immunodeficiency disorders, yet complications such as graft-vs.-host disease (GvHD) limit survival. Development of anti-GvHD therapies that do not adversely affect susceptibility to infection or graft-vs.-tumor immunity are hampered by the lack of a physiologically relevant, preclinical model of allogeneic HSCT. Here we show a spectrum of diverse clinical HSCT outcomes including primary and secondary graft failure, lethal GvHD, and stable, disease-free full donor engraftment using reduced intensity conditioning and mobilized peripheral blood HSCT in unrelated, fully MHC-matched Mauritian-origin cynomolgus macaques. Anti-GvHD prophylaxis of tacrolimus, post-transplant cyclophosphamide, and CD28 blockade induces multi-lineage, full donor chimerism and recipient-specific tolerance while maintaining pathogen-specific immunity. These results establish a new preclinical allogeneic HSCT model for evaluation of GvHD prophylaxis and next-generation HSCT-mediated therapies for solid organ tolerance, cure of non-malignant hematological disease, and HIV reservoir clearance.


Assuntos
Transplante de Células-Tronco Hematopoéticas/métodos , Macaca fascicularis/imunologia , Complexo Principal de Histocompatibilidade , Animais , Feminino , Doença Enxerto-Hospedeiro/prevenção & controle , Teste de Histocompatibilidade , Humanos , Macaca fascicularis/genética , Masculino , Modelos Animais , Especificidade da Espécie , Quimeras de Transplante/genética , Quimeras de Transplante/imunologia , Tolerância ao Transplante/genética , Tolerância ao Transplante/imunologia , Transplante Homólogo , Resultado do Tratamento
12.
Comp Med ; 67(4): 376-380, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28830586

RESUMO

Endometriosis is a relatively common condition in women and some populations of adult female rhesus macaques. However, endometriosis with extensive smooth muscle proliferation, as occurs in endomyometrioma and uterus-like mass (ULM), is rare in women. This report describes a case of endometriosis with extensive smooth muscle metaplasia resembling multiple ULM in a 20-y-old female rhesus macaque. During a protocol-related procedure, a large, smooth, globoid, freely moveable mass was palpated in the midabdomen. Ultrasonography revealed a cystic structure from which dark brown fluid was aspirated. During exploratory laparotomy, an 8-cm spherical mass in the greater omentum and 3 additional masses (diameter, 2 to 5 cm) attached to the omentum were excised. Microscopic examination of the masses revealed numerous foci of ectopic endometrial glands and stroma frequently surrounded by bundles of smooth muscle and fibrous connective tissue. The gross and histologic lesions in this macaque bore many similarities to ULM in women. To our knowledge, this case represents the first report of endometriosis resembling a uteruslike mass in a NHP.


Assuntos
Endometriose/veterinária , Endométrio/patologia , Doenças dos Macacos/patologia , Músculo Liso/patologia , Animais , Biópsia , Proliferação de Células , Endometriose/diagnóstico por imagem , Endometriose/patologia , Endometriose/cirurgia , Endométrio/diagnóstico por imagem , Endométrio/cirurgia , Feminino , Imuno-Histoquímica , Macaca mulatta , Metaplasia , Doenças dos Macacos/diagnóstico por imagem , Doenças dos Macacos/cirurgia , Músculo Liso/diagnóstico por imagem , Músculo Liso/cirurgia , Ultrassonografia
13.
Pediatr Res ; 82(2): 244-252, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28422948

RESUMO

BackgroundIntrauterine infection is a significant cause of early preterm birth. We have developed a fetal-neonatal model in the rhesus macaque to determine the impact of chronic intrauterine infection with Ureaplasma parvum on early neonatal reflexes and brain development.MethodsTime-mated, pregnant rhesus macaques were randomized to be inoculated with U. parvum (serovar 1; 105 c.f.u.) or control media at ~120 days' gestational age (dGA). Neonates were delivered by elective hysterotomy at 135-147 dGA (term=167d), stabilized, and cared for in our nonhuman primate neonatal intensive care unit. Neonatal reflex behaviors were assessed from birth, and fetal and postnatal brain magnetic resonance imaging (MRI) was performed.ResultsA total of 13 preterm and 5 term macaque infants were included in the study. Ten preterm infants survived to 6 months of age. U. parvum-infected preterm neonates required more intensive respiratory support than did control infants. MRI studies suggested a potential perturbation of brain growth and white matter maturation with exposure to intra-amniotic infection.ConclusionWe have demonstrated the feasibility of longitudinal fetal-neonatal studies in the preterm rhesus macaque after chronic intrauterine infection. Future studies will examine long-term neurobehavioral outcomes, cognitive development, neuropathology, and in vivo brain imaging to determine the safety of antenatal antibiotic treatment for intrauterine infection.


Assuntos
Animais Recém-Nascidos , Modelos Animais de Doenças , Infecções por Ureaplasma/patologia , Doenças Uterinas/patologia , Ampicilina/uso terapêutico , Animais , Antibacterianos/uso terapêutico , Comportamento Animal , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Doença Crônica , Feminino , Humanos , Recém-Nascido , Macaca mulatta , Gravidez , Ureaplasma/isolamento & purificação , Infecções por Ureaplasma/tratamento farmacológico , Infecções por Ureaplasma/microbiologia , Doenças Uterinas/tratamento farmacológico , Doenças Uterinas/microbiologia
14.
Sci Rep ; 6: 22427, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26951756

RESUMO

Exposure of infant animals, including non-human primates (NHPs), to anaesthetic drugs causes apoptotic death of neurons and oligodendrocytes (oligos) and results in long-term neurodevelopmental impairment (NDI). Moreover, retrospective clinical studies document an association between anaesthesia exposure of human infants and significant increase in NDI. These findings pose a potentially serious dilemma because millions of human infants are exposed to anaesthetic drugs every year as part of routine medical care. Lithium (Li) at clinically established doses is neuroprotective in various cerebral injury models. We therefore investigated whether Li also protects against anaesthesia neurotoxicity in infant NHPs. On postnatal day 6 NHPs were anaesthetized with the widely used anaesthetic isoflurane (ISO) for 5 h employing the same standards as in a human pediatric surgery setting. Co-administration of Li completely prevented the acute ISO-induced neuroapoptosis and significantly reduced ISO-induced apoptosis of oligodendroglia. Our findings are highly encouraging as they suggest that a relatively simple pharmacological manipulation might protect the developing primate brain against the neurotoxic action of anaesthetic drugs while not interfering with the beneficial actions of these drugs. Further research is needed to determine Li's potential to prevent long-term NDI resulting from ISO anaesthesia, and to establish its safety in human infants.


Assuntos
Anestésicos Inalatórios/toxicidade , Apoptose/efeitos dos fármacos , Isoflurano/toxicidade , Lítio/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Animais , Encéfalo/efeitos dos fármacos , Lítio/farmacocinética , Macaca mulatta , Transtornos do Neurodesenvolvimento/induzido quimicamente , Neurônios/efeitos dos fármacos , Neurônios/patologia , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/patologia
15.
J Am Assoc Lab Anim Sci ; 53(3): 290-300, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24827572

RESUMO

Isoflurane, ketamine, and propofol are common anesthetics in human and nonhuman primate medicine. However, scant normative data exist regarding the response of neonatal macaques to these anesthetics. We compared the effects of isoflurane, ketamine, and propofol anesthesia on physiologic parameters in neonatal rhesus macaques. Neonatal rhesus macaques (age, 5 to 7 d) were exposed to isoflurane (n = 5), ketamine (n = 4), propofol (n = 4) or no anesthesia (n = 5) for 5 h. The anesthetics were titrated to achieve a moderate anesthetic plane, and heart rate, blood pressure, respiratory rate, end tidal carbon dioxide, oxygen saturation, and temperature were measured every 15 min. Venous blood samples were collected to determine blood gases and metabolic status at baseline, 0.5, 2.5, and 4.5 h after induction and at 3 h after the end of anesthesia. Compared with ketamine, isoflurane caused more hypotensive events and necessitated the administration of increased volumes of intravenous fluids to support blood pressure throughout anesthesia; no significant differences were observed between the isoflurane and propofol groups for these parameters. In addition, isoflurane resulted in a significantly shorter average time to extubation, compared with both ketamine and propofol. Due to supportive care, other physiologic variables remained stable between anesthetic regimens and throughout the 5-h exposure. These data improve our understanding of the effects of these 3 anesthetics in neonatal rhesus macaques and will aid veterinarians and researchers as they consider the risks and benefits of and resources required during general anesthesia in these animals.


Assuntos
Anestésicos/administração & dosagem , Animais Recém-Nascidos , Isoflurano/administração & dosagem , Ketamina/administração & dosagem , Macaca mulatta , Propofol/administração & dosagem , Animais , Distribuição Aleatória , Sinais Vitais/efeitos dos fármacos
16.
Anesthesiology ; 116(2): 372-84, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22222480

RESUMO

BACKGROUND: Exposure of rhesus macaque fetuses for 24 h or neonates for 9 h to ketamine anesthesia causes neuroapoptosis in the developing brain. The current study clarifies the minimum exposure required for and the extent and spatial distribution of ketamine-induced neuroapoptosis in rhesus fetuses and neonates. METHOD: Ketamine was administered by IV infusion for 5 h to postnatal day 6 rhesus neonates or to pregnant rhesus females at 120 days' gestation (full term = 165 days). Three hours later, fetuses were delivered by cesarean section, and the fetal and neonatal brains were studied for evidence of apoptotic neurodegeneration, as determined by activated caspase-3 staining. RESULTS: Both the fetal (n = 3) and neonatal (n = 4) ketamine-exposed brains had a significant increase in apoptotic profiles compared with drug-naive controls (fetal n = 4; neonatal n = 5). Loss of neurons attributable to ketamine exposure was 2.2 times greater in fetuses than in neonates. The pattern of neurodegeneration in fetuses was different from that in neonates, and all subjects exposed at either age had a pattern characteristic for that age. CONCLUSION: The developing rhesus macaque brain is sensitive to the apoptogenic action of ketamine at both a fetal and neonatal age, and exposure duration of 5 h is sufficient to induce a significant neuroapoptosis response at either age. The pattern of neurodegeneration induced by ketamine in fetuses was different from that in neonates, and loss of neurons attributable to ketamine exposure was 2.2 times greater in the fetal than neonatal brains.


Assuntos
Apoptose/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Feto/efeitos dos fármacos , Ketamina/toxicidade , Degeneração Neural/induzido quimicamente , Animais , Animais Recém-Nascidos , Apoptose/fisiologia , Encéfalo/patologia , Feminino , Feto/patologia , Infusões Intravenosas , Ketamina/administração & dosagem , Macaca mulatta , Degeneração Neural/patologia , Gravidez , Distribuição Aleatória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA